868 research outputs found

    Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers.

    Get PDF
    BACKGROUND AND PURPOSE: Aspirin resistance may be relatively common and associated with adverse outcome. Meta-analysis has clearly shown that 75 mg plain aspirin is the lowest effective dose; however, it is not known whether the recent increased use of enteric-coated aspirin could account for aspirin resistance. This study was designed to determine whether enteric-coated aspirin is as effective as plain aspirin in healthy volunteers. METHODS: Seventy-one healthy volunteers were enrolled in 3 separate bioequivalence studies. Using a crossover design, each volunteer took 2 different aspirin preparations. Five aspirin preparations were evaluated, 3 different enteric-coated 75-mg aspirins, dispersible aspirin 75 mg and asasantin (25-mg standard release aspirin plus 200-mg modified-release dipyridamole given twice daily). Serum thromboxane (TX) B2 levels and arachidonic acid-induced platelet aggregation were measured before and after 14 days of treatment. RESULTS: All other aspirin preparations tested were inferior to dispersible aspirin (P99%) inhibition (

    Using the Incremental Net Benefit Framework for Quantitative Benefit–Risk Analysis in Regulatory Decision-Making—A Case Study of Alosetron in Irritable Bowel Syndrome

    Get PDF
    AbstractObjectiveThere is consensus that a more transparent, explicit, and rigorous approach to benefit–risk evaluation is required. The objective of this study is to evaluate the incremental net benefit (INB) framework for undertaking quantitative benefit–risk assessment by performing a quantitative benefit–risk analysis of alosetron for the treatment of irritable bowel syndrome from the patients’ perspective.MethodsA discrete event simulation model was developed to determine the INB of alosetron relative to placebo, calculated as “relative value-adjusted life-years (RVALYs).”ResultsIn the base case analysis, alosetron resulted in a mean INB of 34.1 RVALYs per 1000 patients treated relative to placebo over 52 weeks of treatment. Incorporating parameter uncertainty into the model, probabilistic sensitivity analysis revealed a mean INB of 30.4 (95% confidence interval 15.9–45.4) RVALYs per 1000 patients treated relative to placebo over 52 weeks of treatment. Overall, there was >99% chance that both the incremental benefit and incremental risk associated with alosetron are greater than placebo. As hypothesized, the INB of alosetron was greatest in patients with the worst quality of life experienced at baseline. The mean INB associated with alosetron in patients with mild, moderate, and severe symptoms at baseline was 17.97 (−0.55 to 36.23), 29.98 (17.05–43.37), and 35.98 (23.49–48.77) RVALYs per 1000 patients treated, respectively.ConclusionsThis study demonstrates the potential utility of applying the INB framework to real-life decision-making, and the ability to use simulation modeling incorporating outcomes data from different sources as a benefit–risk decision aid

    An internet-based intervention with brief nurse support to manage obesity in primary care (POWeR+): a pragmatic, parallel-group, randomised controlled trial

    Get PDF
    Background The obesity epidemic has major public health consequences. Expert dietetic and behavioural counselling with intensive follow-up is effective, but resource requirements severely restrict widespread implementation in primary care, where most patients are managed. We aimed to estimate the effectiveness and cost-effectiveness of an internet-based behavioural intervention (POWeR+) combined with brief practice nurse support in primary care. Methods We did this pragmatic, parallel-group, randomised controlled trial at 56 primary care practices in central and south England. Eligible adults aged 18 years or older with a BMI of 30 kg/m2 or more (or ≥28 kg/m2 with hypertension, hypercholesterolaemia, or diabetes) registered online with POWeR+—a 24 session, web-based, weight management intervention lasting 6 months. After registration, the website automatically randomly assigned patients (1:1:1), via computer-generated random numbers, to receive evidence-based dietetic advice to swap foods for similar, but healthier, choices and increase fruit and vegetable intake, in addition to 6 monthly nurse follow-up (control group); web-based intervention and face-to-face nurse support (POWeR+Face-to-face [POWeR+F]; up to seven nurse contacts over 6 months); or web-based intervention and remote nurse support (POWeR+Remote [POWeR+R]; up to five emails or brief phone calls over 6 months). Participants and investigators were masked to group allocation at the point of randomisation; masking of participants was not possible after randomisation. The primary outcome was weight loss averaged over 12 months. We did a secondary analysis of weight to measure maintenance of 5% weight loss at months 6 and 12. We modelled the cost-effectiveness of each intervention. We did analysis by intention to treat, with multiple imputation for missing data. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN21244703. Findings Between Jan 30, 2013, and March 20, 2014, 818 participants were randomly assigned to the control group (n=279), the POWeR+F group (n=269), or the POWeR+R group (n=270). Weight loss averaged over 12 months was recorded in 666 (81%) participants. The control group lost almost 3 kg over 12 months (crude mean weight: baseline 104·38 kg [SD 21·11; n=279], 6 months 101·91 kg [19·35; n=136], 12 months 101·74 kg [19·57; n=227]). The primary imputed analysis showed that compared with the control group, patients in the POWeR+F group achieved an additional weight reduction of 1·5 kg (95% CI 0·6–2·4; p=0·001) averaged over 12 months, and patients in the POWeR+R group achieved an additional 1·3 kg (0·34–2·2; p=0·007). 21% of patients in the control group had maintained a clinically important 5% weight reduction at month 12, compared with 29% of patients in the POWeR+F group (risk ratio 1·56, 0·96–2·51; p=0·070) and 32% of patients in the POWeR+R group (1·82, 1·31–2·74; p=0·004). The incremental overall cost to the health service per kg weight lost with the POWeR+ interventions versus the control strategy was £18 (95% CI −129 to 195) for POWeR+F and –£25 (−268 to 157) for POWeR+R; the probability of being cost-effective at a threshold of £100 per kg lost was 88% and 98%, respectively. No adverse events were reported. Interpretation Weight loss can be maintained in some individuals by use of novel written material with occasional brief nurse follow-up. However, more people can maintain clinically important weight reductions with a web-based behavioural program and brief remote follow-up, with no increase in health service costs. Future research should assess the extent to which clinically important weight loss can be maintained beyond 1 year

    The Utility of Transient Sensitivity for Wildlife Management and Conservation: Bison as a Case Study

    Get PDF
    Developing effective management strategies is essential to conservation biology. Population models and sensitivity analyses on model parameters have provided a means to quantitatively compare different management strategies, allowing managers to objectively assess the resulting impacts. Inference from traditional sensitivity analyses (i.e., eigenvalue sensitivity methods) is only valid for a population at its stable age distribution, while more recent methods have relaxed this assumption and instead focused on transient population dynamics. However, very few case studies, especially in long-lived vertebrates where transient dynamics are potentially most relevant, have applied these transient sensitivity methods and compared them to eigenvalue sensitivity methods. We use bison (Bison bison) at Badlands National Park as a case study to demonstrate the benefits of transient methods in a practical management scenario involving culling strategies. Using an age and stage-structured population model that incorporates culling decisions, we find that culling strategies over short time-scales (e.g., 1–5 years) are driven largely by the standing population distribution. However, over longer time-scales (e.g., 25 years), culling strategies are governed by reproductive output. In addition, after 25 years, the strategies predicted by transient methods qualitatively coincide with those predicted by traditional eigenvalue sensitivity. Thus, transient sensitivity analyses provide managers with information over multiple time-scales in contrast to the long time-scales associated with eigenvalue sensitivity analyses. This flexibility is ideal for adaptive management schemes and allows managers to balance short-term goals with long-term viability
    corecore